Unmanned Aerial Systems (UAS), and how they fit within the Geospatial Technological Revolution

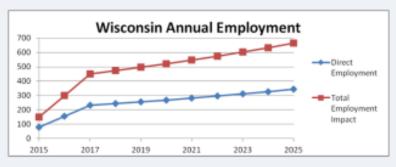
Dr. Joseph P Hupy
Associate Professor
Department of Geography
University of Wisconsin – Eau Claire

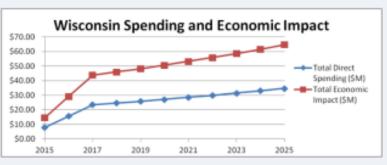
ITotal

UAS Future Potential

Z,38U

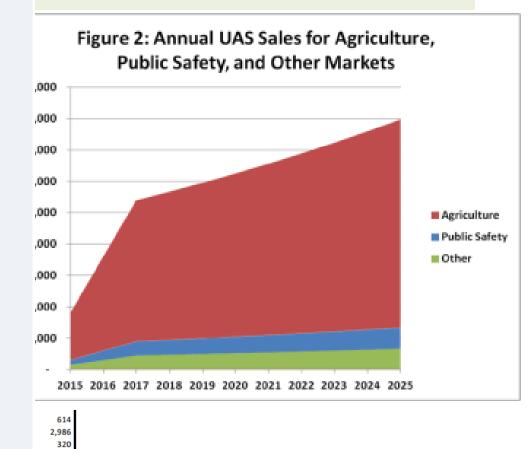
6,746


240


450

24

70,240


Wisconsin Economic Impact						
Year	Direct Employment	Total Employment Impact	Total Direct Spending (\$M)	Total Economic Impact (\$M)	Total State Taxes (\$K)	Percent Change Over Previous Year
2015	77	150	\$7.83	\$14.59	\$159.52	
2016	154	300	\$15.66	\$29.19	\$319.05	100%
2017	232	450	\$23.49	\$43.78	\$478.57	50%
2018	243	473	\$24.66	\$45.97	\$502.50	5%
2019	255	497	\$25.89	\$48.27	\$527.62	5%
2020	268	521	\$27.19	\$50.69	\$554.01	5%
2021	282	547	\$28.55	\$53.22	\$581.71	5%
2022	296	575	\$29.98	\$55.88	\$610.79	5%
2023	310	604	\$31.47	\$58.67	\$641.33	5%
2024	326	634	\$33.05	\$61.61	\$673.40	5%
2025	342	665	\$34.70	\$64.69	\$707.07	5%

\$13,657

\$80.22

\$Z,/83

\$7,888

\$280

\$527

\$28

\$82,124

\$Z6.86

\$0.00

\$2.83

\$5.76

\$0.00

\$482.39

3,517

9,967

354

665

103.776

36

Why UAS?

- -Cheaper
- -Lower
- -Slower

UAS Technological Range

Begs question of what a UAS exactly is?

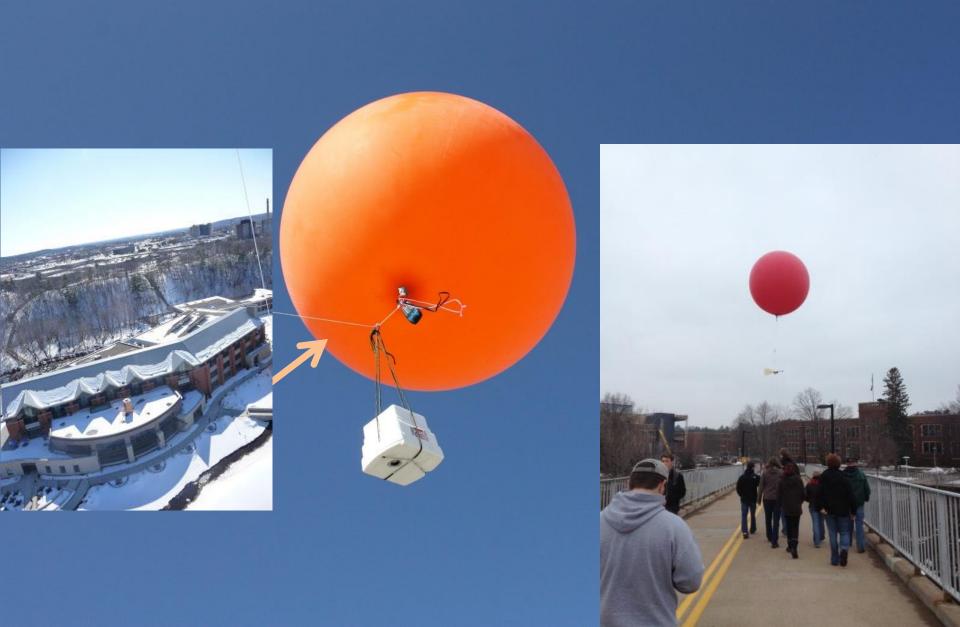
Common UAS Platforms

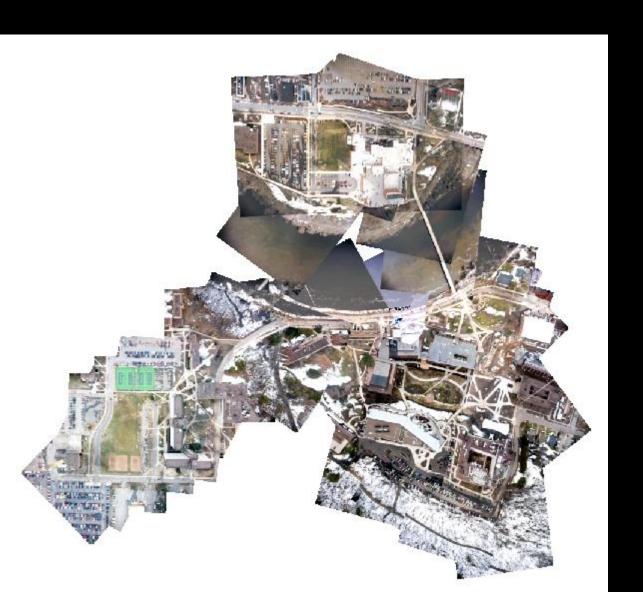
Rotocopter Fixed Wing

RC Vs. Drone – what is the difference?

Components of a UAS

- Platform
- Sensor
- Auto Pilot Hardware
 - Autopilot 'chip'
 - GPS
- Ground Based Software
- Telemetry Set
- Radio Control Receiver
 - For manual control





Can be low tech/cost as.....

Student Generated Via Balloon Platform

Ongoing Work:

- Mosaic Software Evaluation
- Georeferencing Techniques
- Camera Platforms
- Camera Types

Commercial UAS Applications

Agriculture

Manned Fixed Wing Limitations:

- Fuel Costs
- Pilot Costs
- Safety Issues

Other Commercial UAS Applications:

Lake Associations:

- Septic Flow
- Weed Control

Forestry:

Insects

Blights

Harvest

Structural Inspection:

Buildings

Bridges

Steep Slopes

Energy:

Leak Detection

Pipeline Patrol

Power Lines

Wind Turbines

Disaster Management: Wild land Fires

Wild land Fires

Search and Rescue

Science:

 f_{ij}^{ij}

Meteorology

Climatology

Hurrican Forecasting

Seismology

Volcanology

Insurance Industry:
Auto Insurance Claims
Tornado Damage Assessment

Thank You For Your Time:

Questions????

- Contact me at:
 - hupyjp@uwec.edu
 - Website: http://people.uwec.edu/hupyjp
 - Office Phone: 715-836-2316